It is : $y=a x^{2}+b x+c$ where is $x \in R, a \neq 0$ and a, b, c are real numbers.

Curve in the plane, which represents a graph function $y=a x^{2}+b x+c$ is a parable.
First, we learn how to design graph of functions $y=x^{2}$. Create table for some value of variable x .

x	-3	-2	-1	0	1	2	3
y	9	4	1	0	1	4	9

For $x=-3 \quad$ For $x=2$

$$
y=(-3)^{2}=9 \quad y=2^{2}=4
$$

For $x=-2 \quad$ For $\quad x=3$

$$
y=(-2)^{2}=4 \quad y=3^{2}=9
$$

For $x=-1$	For $x=0$
$y=\overline{(-1)^{2}=1}$	$y=0^{2}=0$

For $x=1$
$y=1^{2}=1$

Learn now graph $y=a x^{2}$
There are 2 situations: $a>0$ and $a<0$
For $a>0$
Here is a parable with"opening up". What happens if $\quad a>1$ and if $0<a<1$?
$\underline{\underline{a>1}}$
In relation to the initial graph $y=x^{2}, \quad$ graph $\quad y=a x^{2}(a>1)$ is "more thin"

Example: $y=2 x^{2}$

x	-3	-2	-1	0	1	2	3
y	18	8	2	0	2	8	18

$$
0<a<1
$$

In relation to the initial graph $y=x^{2}$, graph $y=a x^{2}(0<a<1)$ is " more fat"
Example: $y=\frac{1}{2} x^{2}$

x	-3	-2	-1	0	1	2	3
y	$\frac{9}{2}$	2	$\frac{1}{2}$	0	$\frac{1}{2}$	2	$\frac{9}{2}$

For $a<0$ here is a parable with"the opening down."
Initial graph is $y=-x^{2}$.

x	-3	-2	-1	0	1	2	3
y	-9	-8	-2	0	-2	-8	-9

Again, we consider 2 situations for function $y=a x^{2}$: for $\mathbf{a}<-\mathbf{1}$ and $-\mathbf{1}<\mathbf{a}<\mathbf{0}$
The following two examples will clarify us their "behavior":
Example 1.: $\quad y=-2 x^{2}$

x	-3	-2	-1	0	1	2	3
y	-18	-8	-2	0	-2	-8	-18

Example 2. : $y=-\frac{1}{2} x^{2}$

x	-3	-2	-1	0	1	2	3
y	$-\frac{9}{2}$	-2	$-\frac{1}{2}$	0	$-\frac{1}{2}$	-2	$-\frac{9}{2}$

\rightarrow first draft graph of function $y=a x^{2}$
\rightarrow that graph then move along y-line for value of β :

1) If β is positive, move it in the positive direction along y - line 2) If β is negative, move it in the negative direction along y - line

Here are a few examples:
Example 1. $y=\frac{1}{2} x^{2}+1$ (here is $\beta=1$, and we move "up")

Example 2. $y=x^{2}-2$ (here is $\beta=-2$ and we move "down")

\rightarrow first draft graph of function $y=x^{2}\left(\right.$ or $\left.y=-x^{2}\right)$
\rightarrow that graph then move along x -line :

1) If we have $x+\alpha$, move it in the negative direction along x-line (α is negative)
2) If we have $x-\alpha$, move it in the positive direction along x - line(α is positive)

Here are a few examples:
Example 1. $y=(x-3)^{2}$ (here is $\alpha=3$, and we move in positive direction)

Example 2. $y=(x+2)^{2} \quad$ (here is $\alpha=-2$, and we move in negative direction)

-2

Now we have the knowledge to draft the graph of function $y=a x^{2}+b x+c$

First, we have to use so-called "canonical form": $\quad y=a\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a}$
Or, if we mark $\alpha=-\frac{b}{2 a}$ and $\beta=\frac{4 a c-b^{2}}{4 a}$, we have : $y=a(x-\alpha)^{2}+\beta$ and thih form we will use.

Important procedure

i) Put $y=a x^{2}+b x+c$ in canonical form : $y=a(x-\alpha)^{2}+\beta$
ii) Draw graph of function $y=a x^{2}$
iii) Process move along the x-line for α
iv) Process move along the y-line for β

Example: Draw a graph $y=x^{2}-6 x+5$

Solution:

i) Put $y=a x^{2}+b x+c$ in canonical form : $y=a(x-\alpha)^{2}+\beta$

$$
\begin{array}{ll}
\begin{array}{l}
a=1 \\
b=-6
\end{array} & \quad \alpha=-\frac{b}{2 a}=-\frac{-6}{2 \cdot 1}=3 \\
c=5 & \quad \beta=\frac{4 a c-b^{2}}{4 a}=\frac{4 \cdot 1 \cdot 5-(-6)^{2}}{4 \cdot 1}=\frac{20-36}{4}=\frac{-16}{4}=-4 \\
& y=a(x-\alpha)^{2}+\beta \\
y=1(x-3)^{2}+(-4) \\
y= & (x-3)^{2}-4
\end{array}
$$

ii) Draw graph of function $y=a x^{2} \longrightarrow y=x^{2} \quad$ Because ($\mathrm{a}=1$)

iii) Process move along the x-line for α

$$
y=x^{2} \longrightarrow y=(x-3)^{2}
$$

iv) Process move along the \mathbf{y}-line for $\boldsymbol{\beta}$
$y=(x-3)^{2} \longrightarrow y=(x-3)^{2}-4$

The whole process is little "complicated" and not even much accurate. Here's how to more quickly and accurately draw a graph $y=a x^{2}+b x+c$ without reducing the canonical form and use other "movements":

Procedure:

1) First, determine $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and find $D=b^{2}-4 a c$
2) $x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}$

$$
\begin{aligned}
& D>0, x_{1} \neq x_{2} \\
& D=0, x_{1}=x_{2} \\
& D<0, \text { No... } x_{1}, x_{2}
\end{aligned}
$$

3) Depending on the number a, we have:
i)

ii)

4) Parable always cutting the y-line in point ($0, \mathrm{c}$)
5) $T(\alpha, \beta) \quad \alpha=-\frac{b}{2 a}, \beta=-\frac{D}{4 a}$
$T(\alpha, \beta)$ is \max if $a<0$
$T(\alpha, \beta)$ is \min if $a>0$

Example 1): $\quad y=x^{2}-6 x+5$

Solution:

1)

$$
\begin{aligned}
& a=1 \quad D=b^{2}-4 a c=(-6)^{2}-4 \cdot 1 \cdot 5=36-20=16 \\
& b=-6 \\
& c=5
\end{aligned}
$$

2)

$$
\begin{aligned}
& x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{6 \pm 4}{2} \\
& x_{1}=5 \\
& x_{2}=1
\end{aligned}
$$

3)

4)
y -line is cutting in $\mathrm{c}=5$

$$
\begin{aligned}
& T(\alpha, \beta) \\
& \alpha=-\frac{b}{2 a}=\frac{-6}{2 \cdot 1}=3
\end{aligned}
$$

5) $\beta=-\frac{D}{4 a}=-\frac{16}{4 \cdot 1}=-4$

$$
\underbrace{T(3,-4)}_{\min }
$$

Example 2) $\quad y=-\frac{1}{2} x^{2}+\frac{1}{2} x+6$
Solution:

$$
\begin{aligned}
& a=-\frac{1}{2} \\
& b=\frac{1}{2} \\
& c=6 \\
& D=\left(\frac{1}{2}\right)^{2}-4\left(-\frac{1}{2}\right) \cdot 6=-\frac{1}{4}+12=12 \frac{1}{4}=\frac{49}{4}
\end{aligned}
$$

2)

$$
\begin{aligned}
& x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{\frac{1}{2} \pm \frac{7}{2}}{2\left(-\frac{1}{2}\right)}=\frac{-\frac{1}{2} \pm \frac{7}{2}}{-1} \\
& x_{1}=-3 \\
& x_{2}=4
\end{aligned}
$$

3)

$$
a=-\frac{1}{2}<0 \Rightarrow
$$

4)

y -line is cutting in $\mathrm{c}=6$
5)
$T(\alpha, \beta)$
$\alpha=-\frac{b}{2 a}=-\frac{\frac{1}{2}}{2\left(-\frac{1}{2}\right)}=\frac{1}{2}$
$\beta=-\frac{D}{4 a}=-\frac{\frac{49}{4}}{4\left(-\frac{1}{2}\right)}=+\frac{49}{8}=6 \frac{1}{8}$
$T\left(\frac{1}{2}, 6 \frac{1}{8}\right)$

Example 3) $\quad y=x^{2}-4|x|+3$

Solution:

Because $|x|=\left\{\begin{array}{l}x, x \geq 0 \\ -x, x<0\end{array}\right.$ here we have 2 graphics, one for $x \geq 0$, and one for $x<0$

$$
y=x^{2}-4|x|+3
$$

$$
\text { for } x \geq 0
$$

$$
y=x^{2}-4 x+3
$$

1)

$$
\begin{aligned}
& a=1, b=-4, c=3 \\
& D=b^{2}-4 a c=16-12=4
\end{aligned}
$$

$$
x_{1,2}=\frac{4 \pm 2}{2}
$$

2) $x_{1}=3$
$x_{2}=1$
3)

4) y -line is cutting in 3
5)

$$
\begin{aligned}
& T(\alpha, \beta) \\
& \alpha=-\frac{b}{2 a}=\frac{-4}{2 \cdot 1}=2 \\
& \beta=-\frac{D}{4 a}=-\frac{4}{4 \cdot 1}=-1 \\
& T(2,-1)
\end{aligned}
$$

For $x<0$
$y=x^{2}+4 x+3$
1)

$$
\begin{aligned}
& a=1, b=4, c=3 \\
& D=b^{2}-4 a c=16-12=4
\end{aligned}
$$

2)

$$
\begin{aligned}
& x_{1,2}=\frac{-4 \pm 2}{2} \\
& x_{1}=-1 \\
& x_{2}=-3
\end{aligned}
$$

3)

4)
y -line is cutting in 3
5)

$$
\begin{aligned}
& T(\alpha, \beta) \\
& \alpha=-\frac{b}{2 a}=\frac{-4}{2 \cdot 1}=-2 \\
& \beta=-\frac{D}{4 a}=-\frac{4}{4 \cdot 1}=-1
\end{aligned}
$$

$$
T(-2,-1)
$$

First graph $y=x^{2}-4 x+3$ we need only for $x \geq 0$ and second graph $y=x^{2}+4 x+3$ for $x<0$
final solution (FOR $y=x^{2}-4|x|+3$) is:

