SQUARE FUNCTION $y = ax^2 + bx + c$

It is : $y = ax^2 + bx + c$ where is $x \in R$, $a \neq 0$ and a, b, c are real numbers.

Curve in the plane, which represents a graph function $y = ax^2 + bx + c$ is a **parable**.

First, we learn how to design graph of functions $y = x^2$. Create table for some value of variable x.

For x = 1

 $y = 1^2 = 1$

Learn now graph $y = ax^2$

There are 2 situations: a > 0 and a < 0

For a > 0

Here is a parable with "opening up". What happens if a > 1 and if 0 < a < 1?

a > 1

In relation to the initial graph $y = x^2$, graph $y = ax^2 (a > 1)$ is "more thin"

Example: $y = 2x^2$

Х	-3	-2	-1	0	1	2	3
у	18	8	2	0	2	8	18

0 < *a* < 1

In relation to the initial graph $y = x^2$, graph $y = ax^2$ (0 < a < 1) is "**more fat**"

Example: $y = \frac{1}{2}x^2$

Х	-3	-2	-1	0	1	2	3
У	9	2	1	0	1	2	9
	$\overline{2}$		$\overline{2}$		$\overline{2}$		$\overline{2}$

For a < 0 here is a parable with "the opening down."

Initial graph is $y = -x^2$.

Γ	Х	-3	-2	-1	0	1	2	3
ſ	у	-9	-8	-2	0	-2	-8	-9

Again, we consider 2 situations for function $y = ax^2$: for a < -1 and -1 < a < 0

The following two examples will clarify us their "behavior":

Example 2. : $y = -\frac{1}{2}x^2$

Х	-3	-2	-1	0	1	2	3
у	9	-2	1	0	1	-2	9
	$-\frac{1}{2}$		$-\frac{1}{2}$		$-\frac{1}{2}$		$-\frac{1}{2}$

- \rightarrow first draft graph of function $y = ax^2$
- \rightarrow that graph then move along y-line for value of β :
 - 1) If β is positive, move it in the positive direction along y- line
 - 2) If β is negative, move it in the negative direction along y- line

Here are a few examples:

Example 1. $y = \frac{1}{2}x^2 + 1$ (here is $\beta = 1$, and we move "up")

Example 2. $y = x^2 - 2$ (here is $\beta = -2$ and we move "down")

 \rightarrow first draft graph of function $y = x^2$ (or $y = -x^2$)

 \rightarrow that graph then move along x-line :

1) If we have $x + \alpha$, move it in the negative direction along x- line (α is negative)

2) If we have x - α , move it in the positive direction along x- line(α is positive)

Here are a few examples:

Example 1. $y = (x-3)^2$ (here is $\alpha = 3$, and we move in positive direction)

Example 2. $y = (x+2)^2$ (here is $\alpha = -2$, and we move in negative direction)

Now we have the knowledge to draft the graph of function $y = ax^2 + bx + c$

First, we have to use so-called "canonical form": $y = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$

Or, if we mark $\alpha = -\frac{b}{2a}$ and $\beta = \frac{4ac - b^2}{4a}$, we have : $y = a(x - \alpha)^2 + \beta$ and this form we will use.

Important procedure

- i) **Put** $y = ax^2 + bx + c$ in canonical form : $y = a(x \alpha)^2 + \beta$
- ii) **Draw graph of function** $y = ax^2$
- iii) Process move along the x-line for α
- iv) Process move along the y-line for β
- **Example:** Draw a graph $y = x^2 6x + 5$

Solution:

i) Put $y = ax^2 + bx + c$ in canonical form : $y = a(x-\alpha)^2 + \beta$

$$a = 1$$

$$b = -6$$

$$c = 5$$

$$\beta = \frac{4ac - b^2}{4a} = \frac{4 \cdot 1 \cdot 5 - (-6)^2}{4 \cdot 1} = \frac{20 - 36}{4} = \frac{-16}{4} = -4$$

$$y = a(x - \alpha)^2 + \beta$$

$$y = 1(x - 3)^2 + (-4)$$

$$y = (x - 3)^2 - 4$$

ii) Draw graph of function $y = ax^2$ _____ $y = x^2$ Because (a=1)

iii) Process move along the x-line for α

iv) Process move along the y-line for $\boldsymbol{\beta}$

$$y = (x-3)^2$$
 _____ $y = (x-3)^2 - 4$

The whole process is little "complicated" and not even much accurate. Here's how to more quickly and accurately draw a graph $y = ax^2 + bx + c$ without reducing the canonical form and use other "movements":

Procedure:

1) First, determine *a*, *b*, *c* and find $D = b^2 - 4ac$

2)
$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$

 $D > 0, x_1 \neq x_2$
 $D = 0, x_1 = x_2$
 $D < 0, No... x_1, x_2$

3) Depending on the number a, we have:

4) Parable always cutting the y-line in point (0,c)

5)
$$T(\alpha, \beta) \quad \alpha = -\frac{b}{2a}, \beta = -\frac{D}{4a}$$

 $T(\alpha, \beta)$ is max if $a < 0$
 $T(\alpha, \beta)$ is min if $a > 0$

Example 1): $y = x^2 - 6x + 5$ **Solution:**

> 1) a = 1 $D = b^{2} - 4ac = (-6)^{2} - 4 \cdot 1 \cdot 5 = 36 - 20 = 16$ b = -6 c = 52) $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{6 \pm 4}{2}$ $x_{1} = 5$ $x_{2} = 1$ 3)

$$a=1>0 \Rightarrow$$

4)

y-line is cutting in c=5

Example 2) $y = -\frac{1}{2}x^2 + \frac{1}{2}x + 6$ Solution:

$$a = -\frac{1}{2}$$

$$b = \frac{1}{2}$$

$$c = 6$$

$$D = \left(\frac{1}{2}\right)^2 - 4\left(-\frac{1}{2}\right) \cdot 6 = -\frac{1}{4} + 12 = 12\frac{1}{4} = \frac{49}{4}$$

2)

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{\frac{1}{2} \pm \frac{7}{2}}{2\left(-\frac{1}{2}\right)} = \frac{-\frac{1}{2} \pm \frac{7}{2}}{-1}$$
$$x_1 = -3$$
$$x_2 = 4$$

3)

$$a = -\frac{1}{2} < 0 \Rightarrow (--)$$

4)

y-line is cutting in c=6

5)

$$T(\alpha, \beta)$$

$$\alpha = -\frac{b}{2a} = -\frac{\frac{1}{2}}{2\left(-\frac{1}{2}\right)} = \frac{1}{2}$$

$$\beta = -\frac{D}{4a} = -\frac{\frac{49}{4}}{4\left(-\frac{1}{2}\right)} = +\frac{49}{8} = 6\frac{1}{8}$$

$$T\left(\frac{1}{2}, 6\frac{1}{8}\right)$$

Example 3)
$$y = x^2 - 4|x| + 3$$

Solution:

Because $|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$ here we have 2 graphics, one for $x \ge 0$, and one for x < 0 $y = x^2 - 4|x| + 3$ <u>for $x \ge 0$ </u> 1) a = 1, b = -4, c = 3 $D = b^2 - 4ac = 16 - 12 = 4$ $x_{1,2} = \frac{4 \pm 2}{2}$ 2) $x_1 = 3$

$$x_2 = 1$$

3) $a=1>0 \Rightarrow$

4)

y-line is cutting in 3

5)

$$T(\alpha, \beta)$$

$$\alpha = -\frac{b}{2a} = \frac{-4}{2 \cdot 1} = 2$$

$$\beta = -\frac{D}{4a} = -\frac{4}{4 \cdot 1} = -1$$

$$T(2, -1)$$

For
$$x < 0$$

$$y = x^2 + 4x + 3$$

1)

$$a = 1, b = 4, c = 3$$

 $D = b^2 - 4ac = 16 - 12 = 4$

2)

$$x_{1,2} = \frac{-4 \pm 2}{2}$$
$$x_1 = -1$$
$$x_2 = -3$$

3)

$$a=1>\Rightarrow$$

4)

y-line is cutting in 3

5)

$$T(\alpha, \beta)$$

$$\alpha = -\frac{b}{2a} = \frac{-4}{2 \cdot 1} = -2$$

$$\beta = -\frac{D}{4a} = -\frac{4}{4 \cdot 1} = -1$$

$$T(-2, -1)$$

First graph $y = x^2 - 4x + 3$ we need only for $x \ge 0$ and second graph $y = x^2 + 4x + 3$ for x < 0

final solution (FOR $y = x^2 - 4|x| + 3$) is:

